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Abstract

In the first part of this project, I have extended my finite difference simulation code to
included the non-uniform grid methodology of Pitarka (1999). The resulting FD algorithm
combines the efficiency of the memory optimization procedure (Graves, 1996) with the added
benefit of grid size "tuning”, which is based on the given velocity model. Changes in grid
spacing are restricted to occur uniformly along each of the three coordinate axes. Nonethe-
less, a significant reduction in memory requirements relative to the fully uniform grid case
can be achieved. Likewise, the approach allows for added resolution within the lowest ve-
locity regions of the model. As a demonstration of the algorithm, I have run simulations of
the 1992 Landers earthquake using both the uniform and non-uniform methodlogies. With
the non-uniform grid approach, the total model size was reduced by almost a factor of two
(1.7 x 107 vs. 3.0 x 107 grid points), while at the same time, the smallest grid step was

reduced from 0.25 km to 0.15 km within the low velocity basin sediments.

The added efficiency provided by the non-uniform grid methodology allows us to more
readily include a robust representation of anelastic attenuation in the time-stepping algo-
rithm. With this goal, in mind in the second part of this project, we have analyzed the
stability and accuracy of the coarse-grain memory variable technique used for viscoelas-
tic wave field simulations. Here, it is shown that the general behavior of the coarse-grain
system is well described by effective parameters (Mg and @g) that are derived from the

harmonic average of the moduli over the volume of the coarse-grain cell. In addition, the
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use of these effective parameters proves essential for analyzing the performance and accu-
racy of the coarse-grain system for low values (less than about 20) of (). By analyzing the
functional form of the viscoelastic modulus, we derive a necessary stability condition for the
coarse-grain system, which requires that the weighting coefficients be bounded between zero
and one. Specifying the weights using the approach of Day and Bradley (2001) satisfies this
condition for @ values of about 3 and larger; however, using unconstrained optimization
techniques will often produce weights that violate this condition at much higher Q values.
We also derive an improved formulation of the original coarse-grain methodology called the
element specific modulus (ESM) formulation. In the ESM formulation, each element of the
coarse-grain cell uses a different unrelaxed modulus and we provide theoretical expressions
for these unrelaxed moduli. We demonstrate that the accuracy of the coarse-grain system
for Q) values lower than about 20 is significantly increased by using the ESM formulation.
Furthermore, the cost of implementing the ESM formulation is virtually identical to that
of the original formulation. Finally, we present a technique for optimizing the accuracy of
the coarse-grain system for very low @ values. The optimization of the coarse-grain system ._
requires the use of the effective quality factor (Qg), and we demonstrate that using conven-
tional optimization techniques that do not employ the effective parameter Qg will actually

degrade the accuracy of the resulting coarse-grain system.
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Ground Motion Simulations of the 1992 Landers
Earthquake Using Non-Uniform Grid Finite Differences

Robert W. Graves

URS Corporation
566 El Dorado Street
Pasadena, CA 91101
robert.graves @ urscorp.com

Introduction

In this project, I have extended my finite difference simulation code to included the
non-uniform grid methodology of Pitarka (1999). The resulting FD algorithm combines the
efficiency of the memory optimization procedure (Graves, 1996) with the added benefit of
grid size "tuning”, which is based on the given velocity model. Changes in grid spacing
are restricted to occur uniformly along each of the three coordinate axes. Nonetheless, a
significant reduction in memory requirements relative to the fully uniform grid case can
be achieved. Likewise, the approach allows for added resolution within the lowest velocity
regions of the model. As a demonstration of the algorithm, I have run simulations of the 1992
Landers earthquake using both the uniform and non-uniform methodlogies. With the non-
uniform grid approach, the total model size was reduced by almost a factor of two (1.7 x 107
vs. 3.0 x 107 grid points), while at the same time, the smallest grid step was reduced from

0.25 km to 0.15 km within the low velocity basin sediments.

Simulations Results

Figure 1 shows the model region used for the simulations. The Landers source is rep-
resented as a three segment fault model. The rupture model used in the simulations is
from Wald and Heaton (1994), and includes a detailed description of the temporal and spa-
tial heterogeneity of the rupture process. The velocity model is from the SCEC V1 3D
velocity structure. Most of the model is represented as a 1D velocity structure, which is
given by Hadley and Kanamori (1977). The westernmost portion of the model covers the

San Bernardino basin region. The San Bernardino basin is a wedge-shaped structure which
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lies between the San Andreas fault on the north and the San Jacinto fault to the south.

Maximum thickness of sediments within the basin are greater than 1 km.

Ground motions recorded in the San Bernardino area for the Landers and Big Bear
earthquake sequences show significant basin response effects. These effects include elevated
amplitudes and extended durations of shaking relative to sites just outside of the basin (e.g.,
Frankel, 1994}.

For the uniform grid simulations, I used a grid step of 0.25 km and a minumum shear
wave velocity of 600 m/s. This gives a maximum frequency resolution of about 0.5 Hz. For
the non-uniform grid calculations, the minimum shear velocity remains at 600 m/s; however,
the grid spacing in the lowest velocity reg'ions is reduced to 0.15 k. Not only does this
raise the maximum frequency resolution to about 0.8 Hz, it also allows for a more detailed

representation of the shallow velocity structure within the basin.

Figures 2a - 2u compare three component simulated time histories at a number of stations
for the two simulations methodologies. The times histories are ground velocity (cm/s), and
they have all been low-pass filtered at 0.5 Hz. For sites located outside of the basin, the two
methodologies produce very similar waveforms. This suggests that the source and 1D velocity
structure are accurately represented by the non-uniform grid methodology. For sites within
the basin, the two methodologies produce somewhat different results. These differences can
be attributed to the differences in the resulting 3D velocity structures that are used by the
two methods. That is, even though the original velocity model is th.e same, the sampling of
the model with different grid sizes actually results in two different computational models. In
effect, this can be thought of as spatially aliasing the original velocity structure. I confirmed
that the non-uniform grid code does reproduce exactly the same results as the uniform grid
code by running a test model in which both methods used identical 3D velocity structures

(albeit with differing grid steps).

Conclusions

I have successfully implemented the non-uniform grid metholodology of Pitarka (1999)
in my FD simulation software. Performance tests indicate a substantial increase in efficiency

is realized using the new methodology. A comparison of simulations results for the 1992
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Landers earthquake shows that in addition to the increased efficiency of the non-uniform
grid technique, spatial aliasing of the input velocity structure can be reduced as well. The
non-uniform methodology has also been applied to the modeling of the 1999 Hector Mine
earthquake (Graves and Wald, 2000), and to the modeling of ground motions for scenario

earthquakes (Graves, 2001).
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Figure 1: FD model region used in the simulation of the 1992 Landers earthquake. The
black rectangle at the left of the model is the San Bernardino basin region.
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Figure 2a: Comparison of simulation results at stations lucr for uniform (dashed line) and
non-uniform (solid line) grid FD calculations of the Landers EQ.
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Figure 2f: Same as Figure 2a, except for station josh.
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Figure 2g: Same as Figure 2a, except for station lmc.
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Figure 2h: Same as Figure 2a, except for station livs.
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Figure 2i: Same as Figure 2a, except for station lugo.
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Figure 2j: Same as Figure 2a, except for station mifp.

Gravas: Non-Uniform Grid

15



vel (cm/s)

5.00

2.00 |

0.90 -

0.0

niel ver
0.856

20.0 80.0

Figure 2k: Same ag Figure 2a, except for station niel,

Gravas: Non-Uniform Grid

100.0

16



vel (cm/s)

4.00 -

0.0

200

1.50 +

20.0 40.0 60.0 80.0 100.0
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Figure 2n: Same as Figure 2a, except for station sh2a.
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Figure 2q: Same as Figure 2a, except for station shve,
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Abstract

We analyze the stability and accuracy of the coarse-grain memory variable technique
used for viscoelastic wave field simulations. Quy analysis is an extension of the original work
describing the coarse-grain methodology presented by Day (1998) and Day and Bradley
(2001). Here, we show that the general behavior of the Coarse-grain system ig well described
by effective parameters (Mg and (E) that are derived from the harmonic average of the

moduli over the volume of the coarse-grain cell. In addition, the use of these effective

viscoelastic modulus, we derive hecessary stability condition for the coarse-grain system,
which requires that the weighting coefficients be bounded between zero and one. Specifying
the weights using the approach of Day and Bradley (2001) satisfies this condition for Q
values of about 3 and larger; however, using unconstrained optimization techniques will

often produce weights that violate this condition at much higher Q values. We also derive
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Introduction

‘The memory variable technique offers a powerful tool for the incorporation of anelasticity
into time domain wave field simulations (e.g., Day and Minster, 1984; Emmerich and Korn,
1987, Carcione et al., 1988). This technique models a prescribed attenuation behavior by
constructing a complex-valued modulus in the frequency domain using a linear combination
of multiple relaxation mechanisms (e.g., Liu et al., 1976). Transformation into the time do-
main yields a set of memory variables (one for each relaxation mechanism) that are updated
using first-order differential equations. Increasing the number of relaxation mechanisms will
increase the applicable bandwidth of the attenuation operator and will also improve the
fit to the target attenuation model. In addition, to achieve the same degree of accuracy,
models with strong attenuation (low Q) will genérally require more relaxation mechanisms
than models with weak attenuation (high ). The drawback with using more relaxation
mechanisms in the attenuation model is the large cost increase associated with updating and
storing the additional memory variables. This is particularly burdensome for 3D applica-
tions where the use of more than just one or two discrete relaxation mechanisms can be very

costly (e.g., Robertsson et al., 1994; Xu and MecMechan, 1998).

To address this issue, Day (1998) developed a coarse-graining methodology for mem-
ory variable calculations. In the coarse-grain approach, individual relaxation mechanisms
are distributed in a spatially periodic manner across adjacent nodes of a finite-difference or
finite-element grid. For 3D models, up to eight discrete relaxation mechanisms (one per grid
node) can be accommodated in each coarse-grain cell. Using perturbation theory and verified
by example, Day (1998) showed that the coarse-grain approach yields highly accurate results
for @ > 1 as long as the wave field is sampled at a minimum of 4 points per wavelength.
Furthermore, since only one relaxation mechanism is needed at each grid location, a tremen-
dous reduction in storage and computational cost is realized. Recéntly, Day and Bradley

(2001) have successfully extended the coarse-grain methodology to viscoelastic simulations.

The analyses of Day (1998) and Day and Bradley (2001) concentrate on the behavior of
the coarse-grain system for constant (frequency independent) Qg values of 20 and greater.
Using numerical examples, they find that the apparent () measured from coarse-grain calcu-

lations matches the target Qp to within 4% tolerance over about two decades in frequency.
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numerical dampers, such as sponge-zones (Israeli and Orzag, 1981) that are used to reduce
artificial reflections along computationa] boundaries, These applications stress the need to .

gain a better understanding of the coarse-grain system for low @ values.

of Q. We accomplish this by using effective parameters (Mg and @g), which are de;ived
from the harmonic average of the viscoelastic moduylj over the volume of the coarse-grain
cell. These theoretical expressions predict that the behavior of the coarse-grain system
begins to significantly deviate from that of the general (or Lion-coarse-grain) system when

the target Qy value is less than about 20. This result has important implications for analyzing

parameters Mg and Qp. Next, we derive a stability condition for the coarse-grain system
and present an analysis of stability thresholds for optimized and non-optimized systems., We
show that optimized systems will generally violate the stability threshold at much larger Q
values than the non-optimized system. This is followed by a derivation of expressions for the
unrelaxed (or infinite frequency) modulj using the element specific modulus (ESM) formula-

tion. This formulation assigns a different unrelaxed modulus to each relaxation mechanism

In addition, we also show that the results of the ESM calculations are in very good agree-

ment with the theoretical behavior of the coarse-grain system as predicted by the effective
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coarse-grain system based on the use of Qp, and we show that very good results are obtained
even for  values as low as 2. We conclude with a layered model comparison to demonstrate
the effectiveness of the ESM formulation in the presence of sharp media interfaces (including
a free surface) and then we discuss some practical considerations of applying the coarse-grain

system in generally heterogeneous 3D media.

Viscoelastic Modulus Representation

In the frequency domain, a general viscoelastic modulus M(w) can be approximated

using a discrete relaxation spectrum as

SM Y
M =M - %
(w) = My 1 My &= iwr; + 1

, (1)

where M, is the unrelaxed modulus, % is the modulus reducti‘on factor, 7; are relaxation
times (7; = 1/w;), a; are coefficients chosen to fit a desired spectrum, and i = (—1)%/2 is the
imaginary unit. Equation (1) follows from either equation (25) of Day and Minster (1984) or
equation (11) of Emmerich and Korn (1987). Using equation (1), the quality factor is given
by

N
-5 Yt
Re|M(w) My = w'rf + 1

In the general application of the memory variable method, diven a target Q(w), the
coefficients a; and 7; can be prescribed using Padé approximants (Day and Minster, 1984)
or simple approximation formulas {e.g., Day and Bradley, 2001), or alternatively, equation
(2) can be used to solve for the coefficients a; and 7; numerically {e.g., Emmerich and
Korn, 1987; Xu and McMechan, 1998). Once the a; and 7; are set, equation (1) can be
used to derive the viscoelastic wave equations and associated memory variable equations (V

equations in all), which then must be solved at each computational node in the model grid
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(for details, see Emmerich and Korn, 1987; Robertsson et al., 1994: Xu and McMechan,
1998).

Coarse-Grain Implementation

Without loss of generality, we can rewrite equation (1) as

N xj
M(w) = Mu [1 — J; ?I,—“—w—w.rj + IJ y (3)
where we have set,
oM

In the coarse-grain approach, the N memory variables assoctated with equation (3) are
distributed over N adjacent grid elements of the discrete simulation model, so that there is
only one memory variable for each grid element (Day, 1998; Day and Bradley, 2001). This

implies that each grid element has its own discrete viscoelastic modulus given by
My(w) = My, [1 - ——w_“k—] : (5)
¥ w1

where £ = 1, .| N in the periodic manner described by Day ( 1998), My, is the element

specific unrelaxed modulus, and

Ty == — T (6)

are the volumetric normalized coefficients, with the volume of the kt* grid element given by

N
Vi and the total volume of the N adjacent grid elements given by Vp = 3 V;.
j=t

The coarse-grain theory developed by Day (1998) states that for wavelengths longer
than about 4 grid elements and for & > 1, the application of equation (5) at NV adjacent
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grid elements will yield a good approximation to the general relaxation spectrum given by
equation (1}, and thus will also satisfactorily reproduce the attenuation behavior predicted

by equation (2).

However, as will be shown later, the general behavior of the coarse-grain system is
actually better described not by the general modulus given in equation (1), but rather by
the effective modulus that is derived from the harmonic average of the M & (w) over the volume

of the coarse-grain cell. We define this effective modulus as M E(w), which is given by

Mg(w) = VT[Z

with an associated effective quality factor Q gl{w) given by

Qse) = o ©)

More complete expressions for Mg(w) and Qg(w) are given in the Appendix. Qur use of
harmonic averaging to define effective parameters follows from analogous formulations used
to precisely represent media heterogeneity in grid based calculations (e.g., Zahradnik et al.,
1993; Graves, 1996; Moczo et al., 2001). In the next section, we show that for target Q
values greater than about 20, there is little difference between the effective modulus given
By equation (7) and the general modulus given by equation (1). However, for smaller values
of @, the difference becomes quite significant, and it is shown that the behavior of the
coarse-grain system follows very closely the theoretical behavior predicted by these effective
parameters. Thus, these effective parameters provide a general framework for analyzing and

optimizing the accuracy of the coarse-grain system, particularly for low values of Q.

Stability Analysis

In order to ensure physical stability for any viscoelastic modulus, two necessary con-
ditions must be satisfied. First, the modulus at zero frequency (relaxed modulus) must

remain strictly positive, and second, the general viscoelastic modulus must be dissipative
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for all frequencies. The first condition above follows from thermodynamic considerations of
Hooke’s law, and the second condition places a positivity constraint on the quality factor
(negative values would give rise to energy amplification, not dissipation). Satisfying both of
these conditions using the discrete relaxation spectrum formulation requires that both the

real and imaginary parts of the spectrum remain positive,

Starting with equation (5), we rewrite this expression into its discrete real and Imaginary

parts, giving

Ir . TrwTy
=My (1— — 2k _ L ; ST
Mi(w) ku [ Wi + 1 + zszg +1 (9)
Visual inspection of equation (9) leads to the following stability condition
T

5y <1, 10
T w1 (10)

which, since this must hold for all w2 = 0, can be simplified to
0<z; <1 . (11)

Equation (11} represents a necessary stability condition for the memory variable system,

thus it must be satisfied regardless of how the Z; and i coeflicients are determined.

In satisfying this stability condition, there exists & tradeoff between the absorption band-
width over which the prescribed relaxation spectrum is valid and the accuracy to which this
relaxation spectrum matches the desired @ model. Furthermore, given a prescribed absorp-
tion bandwidth, there will generally be some minimum value of the desired @ model below
which the stability condition wil] be violated. For example, Day (1998) and Day and Bradley
(2001) assume a frequency independent ¢ model and use a simple procedure to set all of the

coefficients Zj, in the coarse-grain system equal to the same constant value

_ oM 21n(7‘M/To)
=" 12
xk M, (ﬂ'Qo -2 Ill(wo-fo)] } -
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with the 7 evenly distributed on a logarithmic scale

k-1
2N

Inr, =lnm + [In(TM/To)] k=1, N . (13)
Here, 75 and v are the lower and upper absorption-band cutoffs, and wyq is a prescribed
reference frequency where the resulting relaxation spectrum matches the desired constant
Qo. Setting wy = {Tprmo) M2 (i.e., the geometric average of the absorption-band cutoffs),

inserting equation (12} into the stability condition (11) and rearranging terms, we get

-~y < ln(TM/To) <7mQp . (14)

By definition T > 79, thus the lower bound condition will always be satisfied with this
simple parameterization. However, for a given 73y and 7y, there will always be a minimum
(positive) Qo below which the upper bound condition will be violated. For example, using
numerical experiments, Day ( 1998) showed that the relation 7y /7y = 104 provides a nearly
frequency independent @ (for Q > 20) over more than two decades of bandwidth. Inserting

this value into equation {10), we have the requirement Qg > In(10%) /7 = 3.

Figure 1 plots the resulting Q(w) and Qp(w) obtained from equations (2) and (A6),
respectively, using the above coefficient parameterization [i.e., equations (12} and (13)] with
N = 8, and various target values of Q. Also shown on this plot are the values of #; associated
with each (g. This plot clearly shows that as the target o decreases, the approximation
provided by the above parameterization becomes increasingly less accurate. In addition, as
GJo decreases, the Z; coefficients increase, with the value at Qo = 2 exceeding the stability
limit. This figure also shows that the effective quality factor Qp(w) provides a less accurate
fit to the target Qg than the general quality factor &(w) that would result from a non-coarse-
grain implementation. For this parameterization, the difference between R(w) and Qp(w) is
only significant for (g less than about 10. Numerical simulations are in agreement with this

theoretical behavior.

In theory, more accurate representations of Q(w) can be obtained by optimizing the Zj

and 73, using numerical techniques (e.g., Emmerich and Korn, 1987; Xu and McMechan,
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1998). Although these optimization procedures can provide a very accurate match to the
- general Q(w) over a specified bandwidth, they will generally produce Iy that will violate
the coarse-grain stability condition (11) at a much higher target @ value than when using a
simpler approximation. Furthermore, the effective quality factor of the coarse-grain system
@Ee(w) obtained from these types of optimization procedures can be very different from the

general Q(w).

We demonstrate this behavior by using the least-squares algorithm of Emmerich and
Korn (1987) to solve for the coefficients Z) for various values of Q. Again, the 7. were
prescribed using the relation of Day and Bradley (2001) and we set T™™/To = 10% and N = &.
Figure 2 plots the resulting Q(w) and Qg(w) for this parameterization, and various values
of Qp. Also shown are the maximum of the 7, coefficients obtained for each GJo- Clearly, the
match to the general attenuation model Q(w) is quite accurate even for very small values of
Qo. However, the maximum of the Ty, coefficients increases quite rapidly with decreasing Qp,
and exceed the stability limit at about Qo = 10: In addition, as Qg decreases, the effective
quality factor @z(w) begins to diverge quite significantly from the general Q(w). Since it is
the Q@z(w) that governs the attenuation behavior of the coarse-grain method, optimizing the
fit to the general Q(w) will actually degrade the accuracy of the coarse-grain system. This
behavior will be demonstrated later by example, and we will subsequently exploit this fact

to show that improved accuracy can be obtained by optimizing directly on @ r{w) instead

of on Q(w).

Specification of the Element Specific Unrelaxed Modulus

Day and Bradley (2001) give an expression for the unrelaxed modulus based on the
constant (Jo model, and they assume that the unrelaxed modﬁlus (M,) is the same at all
of the N adjacent grid elements in the coarse-grain system. For Qg greater than about
20, this approach works reasonably well. However, this formulation equalizes the element
specific phase velocities at infinite frequency. Since each relaxation mechanism gives rise
to a different dispersion relation, the result is to induce small-scale heterogeneity in the
phase velocity at those frequencies that fall within or below the absorption band. The
performance of the method is improved, especially at very low @, if we instead minimize

the phase velocity heterogeneity at some reference frequency falling near the center of the
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band of computational interest. We can accomplish this by permitting the element specific
unrelaxed moduli (My,) to vary within the coarse-grain cell in such a way as to equalize the
element specific frequency-dependent moduli at the reference frequency. Here, we derive an

expression for such an element specific unrelaxed modulus.

Following Kjartansson (1979), the phase velocity in an attenuating medium is given by

How) = Re[(M’é’w))l/z} , (15)

where p is the medium density. Inserting the element specific modulus lequation (9)] for
the modulus in equation (15), and then evaluating the resulting expression at a reference

frequency fo = wo/2m, we get (after rearranging terms)

1 ~1f2 ~1/2
Me, = o5 4+ 8L {1+ 4, + B (16)
where
e Tk _ etk
Apy =1 pp and B, o rea (17)

and ¢g is the prescribed propagation velocity at the reference frequency.

Equation (16) can be interpreted as a prescription for a set of element specific unrelaxed
moduli My, that ensure spatial homogeneity (i.e., over the coarse-grain cell} of the modulus
at the reference frequency fy. This equation has two important implications. First, even if
the reference medium is entirely homogeneous, this expression requires that the NV adjacent
grid elements in the coarse-grain system each have a different elastic (unrelaxed) modulus.
However, this apparent heterogeneity will only exist at very short wavelengths (and high
frequencies). The above parameterization will provide a good approximation to the frequency
dependent modulus as long as the propagation wavelengths are about 4 grid elements or
greater [consistent with the coarse-grain theory developed by Day (1998)]. For low-order FD

and FE implementations, this condition is easily satisfied.
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The second implication of using equation (16) is that the maximum allowable time step
will be controlled by the largest M}, in the entire model domain, which will always be larger
than the corresponding effective M,,. This effect might be significant, particularly when low
values of Qp occur in the highest velocity portions of the model. Fortunately, the lowest
@ values tend to strongly correlate with the lowest velocities, so the overall impact of this

second effect is generally not significant.

In order to demonstrate the importance of using the element specific modulus given by

equation (16), we have performed a series of numerical calculations using a 3D staggered-grid
finite difference code (Graves, 1996). These calculations use plane wave models similar to
that used by Day (1998) and Day and Bradley (2001). The calculations are initiated by
imposing a velocity pulse with shape s(t) = texp(—t/T) along one plane of the 3D grid.
Motion is specified either normal (P wave) or parallel (S wave) to the plane. The medium is
homogeneous with P and S wave velocities of 6 km/s and 3.46 km/s, respectively, prescribed

at a reference frequency fp = 1 Hz, and a density of 2.7 g/cm3.

We use a constant Q model and set the Ty, and 73 coefficients using equations (12) and
(13). Two values of Qy are considered, 20 and 5, and the associated 70, ™, fo and ¢y
[maximum propagation velocity as determined from equation (16)], are shown in Table 1. [Table 1
These values of 74 and 7y, give a target bandwidth for the constant (o model of about four |
decades (roughly 0.01 Hz to 100 Hz). For all calculations, the source duration parameter 7'

s set to 0.1 and the grid spacing is 0.1 km.

Figure 3 plots the velocity waveforms simulated at a propagation distance of 10 km [Figure ¢
for each of the above cases. The analytic solution is computed using the formulation of
Kjartansson ( 1979). We used two different formulations to specify the unrelaxed modulus
in the FD simulations. The first (labeled “Element Specific My, ” and hereafter referred
to as the ESM formulation) uses equation (16) to determine the element specific unrelaxed
modulus for each of the 8 adjacent grid elements in the coarse-grain system. The second
(label “Constant M, ", and hereafter referred to as the CM formulation) uses the method
of Day and Bradley (2001) to determine a single unrelaxed modulus, which is then used for
all grid elements in the entire model. For all cases, the velocity pulse is normalized to unit

amplitude at zero distance.
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For ¢y = 20, the ESM formulation gives an excellent match to the timing, waveform
and amplitude of the analytic time history for both P and S waves. The CM formulation
produces a very good result for this o value as well, with the only noticeable shortcoming
being a slight phase delay of the pulse. At Qo = 5, the difference in performance between
the two formulations is much more significant, with the ESM formulation clearly providing
a better overall match to the analytic response. Although both formulations underpredict

the amplitude of the analytic pulse, the CM response also exhibits a significant phase delay.

Taking the response at two locations separated by a distance Az, we can measure the

apparent ¢ from these plane wave tests using the relation

Q7 w) = -2 (3(22: [ln;v(rc A Aa;,w)i - lnifu(m,w)” , (18)

where |v(z,w)| is the Fourier amplitude spectrum of the velocity time history at location z

and the frequency dependent phase velocity ¢(w) is given by (Kjartansson, 1979)

o

with ¢g the specified velocity at reference frequency fo and

¥ = % tan™? {L] : (20)

Equation (18) differs slightly from the relation used by Day and Bradley (2001) in that we
use ¢(w} instead of the constant cy. The form used here gives more accurate results for low

@ values.

Figure 4 plots the Q4 computed for each of the above plane wave calculations at a
separation distance of Az = 2 km. These results are plotted up to 12 Hz for P waves and 7 |
Hz for S waves, which corresponds to a sampling of 5 grid points per respective wavelength.
The low frequency cutoff for the results is determined by the total computed duration, which

is generally about 12-15 seconds.
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For Qo = 20, both formulations do reasonably well at matching the desired Q behavior
over roughly two decades of frequency (centered at the reference value of 1 Hz). As discussed
by Day (1998) and demonstrated by the results in Figure 4, the accuracy of the coarse-grain
method begins to diminish near the 5 grid points per wavelength sampling limit. For Qg = 5,
the accuracy of both formulations is reduced relative to the higher @, case. However, the
ESM formulation still matches the target Qg value to about 425% over the central two
decade frequency band, whereas the CM formulation significantly underpredicts the target

Qo over most of this same bandwidth.

Also shown in the panels of Figure 4 are the coarse-grain effective ) curves [Qg(w)] given

by equation (A6). In each case, the ESM formulation follows the theoretical behavior of the ’

@p(w) curve reasonably well, particularly for frequencies above 1 Hz. At lower frequencies,
the ESM results deviate somewhat from the theoretical curves (most noticeable for the
S wave case at low (). We suspect that this deviation is caused by (vefy low amplitude)
artificial boundary reflections, which are virtually impossible to suppress competely from the
calculations. The importance of considering the Q g{w) behavior will be discussed further in

the following section.

As a final comparison, we have computed the P and S wave phase velocities for each of
the plane wave calculations, and these results are plotted in Figure 5. The phase velocity
is obtained by measuring the phase delay of each Fourier component in the computed time
history at two adjacent locations (1 km apart in this case). In the plots shown in Figure 5,
we have normalized the measured phase velocity by the theoretical value given by equation

(19), thus a value of one gives an exact match to the analytic result.

For ()¢ = 20, the ESM formulation provides a very close match to the theoretical result
across roughly two decades of frequency. The CSM formulation produces a phase velocity
which is about 1% less than the theoretical value over this same bandwidth. This result is
consistent with the observed phase delay seen in Figure 3. For Qp = 3, both formulations
exhibit significant dispersion relative to the theoretical value; however, the ESM formulation
clearly provides a more accurate result. The largest mismatch of the ESM formulation is on
the order of a few percent and occurs at the lower frequencies. In the time domain, this is

manifest by a slight delay of the waveform tails as seen in the lower panels of Figure 3. On
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the other hand, the CM formulation underpredicts the theoretical value by roughly 10% over
most of the bandwidth, resulting in a noticeable delay of the entire waveform pulse as shown
. Figure 3. Also shown in this figure are the effective phase velocity curves cg(w), which
we have derived from the effective modulus Mz(w) using equation (15). For each case, the

behavior of the ESM calculation is predicted nicely using the theoretical cg(w) curves,

Significance of Effective Parameters Mg and Qg

The importance of using the effective parameters My and Qg to analyze the behavior
of the coarse-grain system is further demonstrated by the results shown Figure 6. Here, we
approximate a constant ¢Jo of 12 with the general Q(w) given by equation (2) and solve for
the Ty, coefficients using the least-squares algorithm of Emmerich and Korn (1987). The 73,
are the same as in the preceding calculations, and we use the ESM formulation. As shown
in Figure 2, this parameterization gives a maximum Z; that is just within the stability
threshold for the coarse-grain system. Figure 6 compares the theoretical and computed
waveforms, apparent attenuation (Q4), and measured. phase velocity for this formulation.
In the following, we show results for P waves, although very similar results are obtained for

S waves.

As discussed earlier (Figure 2), the theoretical behavior of the general Q(w) for this
formulation matches the constant Qg of 12 very well over nearly 4 decades of frequency.
However, the comparisons in Figure 6 clearly demonstrate that the resulting behavior of the
coarse-grain calculation is actually predicted much more closely by the effective parameters,
Qr(w) and cp(w) (derived from Mp{w) using equation (15)]. Furthermore, these results also
demonstrate that using the general Q{w) to determine the choice of the Zj coefficients for
the coarse-grain system actually results in a significant degradation in the accuracy of the

calculation.

Improved Accuracy and Stability for Low Qg

"The results from the preceding section suggest that a better approach for improving the
accuracy of the coarse-grain system is to use the effective parameter Qg(w) instead of the
general Q(w) to guide the determination of the Z and 7 coefficients (e.g., by optimizing
the fit to the target Qq).
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The relationship among the Tk, Tk and Qg (w) is highly non-linear {see Appendix). Here,
we use a simple grid search perturbation algorithm to determine the coefficients given g,
target Qo. In general, any of a variety of non-linear solution algorithms can be used to
determine these coefficients, each having its own optimization criteria. Quy fitting criterion
seeks to minimize the sum of the squared residuals between Q g(w) and Qg over the prescribed
absorption bandwidth. The approach used here results in a system which matches the target
(o reasonably well over about two decades in frequency (as shown below). Table 2 lists the
coefficients for target Go values of 5 and 2 determined with this technique for the ESM

formulation. F igures 7, 8 and 9 show, respectively, the waveforms, apparent attenuation

(Q4) and phase velocity obtained from plane P and S wave calculations which use these

optimized parameters. All other model parameters are the same as in previous tests.

For Qg =5, an excellent it is obtained between the theoretical and computed responses,
with the measured Q4 matching the target Qp to within a few percent over roughly two
decades of frequency. In Figures 8 and 9, we also show theoretical curves for @r(w) and
cg(w) to illustrate how the computed response closely follows the behavior predicted by the
effective parameters. For Qo = 2, the fit to the theoretical response is stil] remarkably good,
with the measured @4 matching the target (o to within a few percent over roughly one-
and-a-half decades of frequency. Again, the effective parameters Qg(w) and ce(w) provide

a reasonably accurate prediction of the behavior of the computed results.

It becomes increasingly difficult to derive a coarse-grain system that is valid over an
appreciable bandwidth for Q values lower than about 2 becanse the Z) coefficients are very
close to the stability limit (see Table 2). The only way to maintain stability for these very
low @ values is to decrease the spread of the 7;; coefficients. In the limit that all the T are
equal, the coarse-grain system reduces to a narrow-band model with only a single memory

variable (Robertsson et al., 1994).

Layered Model Test

We test the performance of the coarse-grain formulations in more complex media (in-
cluding a free surface} by running calculations for the three tayer model listed in Table 3.

A point double-couple with strike — 90°, dip = 90°, rake = 0° and My = 10% dyne - cm is
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used to initiate the calculations. The source depth is 2 km and the moment rate function is

a cosine-bell function given by

My _
. e [ ] — <t <T:
Myt) = | F (1 —cos2mt/T), f0Lt<T:

0, otherwise;

(21)

with a width of 7' = 0.2 s. The resulting time histories are analyzed for an observation point
located 5 km from the source at an azimuth of 143°. The FD calculations use a grid spacing
of 100 m, yielding a maximum frequency resolution of 1 Hz for a shear wave sampling of 5
grid points per wavelength in the lowest velocity region of the model. In addition to the finite
difference (FD) calculations, we also compute the solution using the frequency wavenumber
(FK) technique. All results are low-pass filtered using a fourth-order, zero-phase Butterworth

operator with a corner at 1 Hz.

First we compare the FD and FK results for a pﬁrely elastic (infinite ) model. This
comparison allows us to analyze the fidelity of the FD solution for the prescribed model
parameters. Figure 10 plots the computed time histories and their associated Fourier am-
plitude spectra. The agreement between the FD and FK results is excellent in both the
time and frequency domains. The only noticeable difference is a very slight delay of some
of the later phases of the FD result, which can be attributed to the effects of numerical grid

dispersion within the shallowest velocity layer.

Figure 11 compares the three coarse-grain FD formulations (Optimized ESM, ESM and
CM} with the FK result for the anelastic model. Obviously, the effects of anelasticity have a
strong impact on the waveforms relative to the purely elastic case, most notably by reducing
the overall amplitude of the signals and by suppressing much of the later arriving, shorter
period energy. Both the Optimized ESM and ESM formulations do an excellent job of
matching the waveforms and spectra of the anelastic FK result, demonstrating the ability of
these formulations to accurately model very low (spatially variable) () in the presence of sharp
media boundaries and a free surface. In addition, the CM formulation performs reasonably
well for this model. However this formulation tends to underpredict the amplitudes of the

waveforms (particularly at shorter periods on the horizontal components), and also exhibits a
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noticeable phase delay of the S waves and surface waves, ‘These characteristics are consistent

with the theoretical behavior of the CM formulation as discussed earlier.

Discussion

The examples and theoretical analysis in the previous sections demonstrate the improved
accuracy that is provided by the ESM formulation compared to the CM formulation, partic-
ularly for low Q values. From a practical standpoint, the implementation cost of the ESM
formulation is virtually identical to the CM formulation (about 50% - 60% increase in mem-
ory and CPU for either formulation relative to the purely elastic case). The one possible
exception to this would be a model where the highest velocity material also had a very low °
@, in which case the ESM formulation would require a smaller time step than the CM for-
mulation. Fortunately, for most applications the lowest Q values tend to strongly correlate
with the lowest velocities, so the impact of this effect will generally be insignificant. In fact,
for our layered model test, the time step requirement was the same for the CM, ESM and

Optimized ESM formulations.

Our results also demonstrate that the Optimized ESM formulation can provide a high
degree of accuracy for very low @ models. However, there are some issues concerning the
general application of the optimized formulation that warrant further discussion. First, the
overhead cost associated with determining the optimized %), and Ty, coefficients for a generally
heterogeneous 3D model may be quite significant. For example, Olsen et al. (2001) have
proposed a () model for the LA basin that is proportional to the local seismic wave velocity,
which may be different at each grid point in the model. Optimization would require the
calculation of the coefficients at each coarse-grain cell having a different &p and/or Q, value.
Some cost savings may be realized by precomputing and tabulating the coefficients for a
a limited number of reference @ values, and then assigning a reference value to each grid
point. However, the practical benefit and accuracy of this type of approach needs further

investigation.

An additional issue involves the trade-off between the added cost of optimization and
the benefit of increased accuracy. Qur layered model test indicates that there is not a

significant difference in the performance of the optimized versus non-optimized versions of
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the ESM formulation even for models with @) values as low as 5. Most seismic applications
fall into a class of models with @ > 5, and our results suggest that the non-optimized
ESM formulation can easily handle these applications with a very high degree of accuracy.
For models with @@ < 5 (e.g., shallow reflection applications; Xu and McMechan, 1998),
optimized formulations may be used, or alternatively, the non-optimized ESM formulation
can also be extended to very low @ values by reducing the range of the absorption band [see

equation (14)].

Another potential application involving very low () is the suppression of artificial reflec-
tions in spong&zénes adjacent to absorbing boundaries (Israeli and Orzag, 1981; Robertsson
et al., 1994). The broadband nature of the coarse-grain system allows for a more complete
absorption of energy than the single memory variable scheme proposed by Robertsson et al.
(1994) at no additional cost. For efficiency, we use the CM formulation in the sponge-zone
and gradually reduce the ) values to a minimmum of ¢} = 5 right at the boundary. Although
the CM formulation is less accurate than the ESM formulation, it requires a smaller value of
the unrelaxed modulus, which consequently permits a larger time step. This is an important
consideration when high velocity regions of the model lie along the computational boundary.
The loss of accuracy in the sponge-zone is of no practical significance since the goal is to

remove this energy from the system anyway.

As afinal point of discussion, we note that while most of the theoretical analysis presented
- here is based on simple models, our ultimate goal is to apply this technique to generally
heterogeneous 3D media. In this case, each grid element may have different moduli and @
values. However, with the coarse-grain method, all elements of the coarse-grain cell (eight
adjacent nodes in 3D} must have the same @ value (although they can still have different
moduli}). This effectively limits the spatial resolution of @ variability to twice the grid
size. Previous studies have shown that harmonic averaging of the volumetrically normalized
moduli provides the correct representation of internal media boundaries, even at the sub-grid
level {e.g., Zahradnik et al., 1993; Graves, 1996; Moczo et al., 2001). Following this approach,
we calculate the target () value for each coarse-grain cell by harmonically averaging the eight
input  values over the volume of the coarse-grain cell. This approach has worked very well
in our test calculations (e.g. the layered model test); however, further evaluation is needed

to more fully document the theoretical basis for this representation.
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Conclusions

In this paper, we provide a theoretical analysis of the stability and accuracy of the
coarse-grain anelastic technique originally developed by Day (1998) and Day and Bradley
(2001). We show that the behavior of the coarse-grain system is best described by effective
parameters (Mg and Qg) that are derived from the harmonic average of the moduli over the
volume of the coarse-grain cell. The use of these effective parameters is essential for analyzing
the performance and accuracy of the coarse-grain system, particularly for low values of Q.
Our analysis derives a necessary stability condition for the coarse-grain system, which states
that the weighting coefficients must lie between zero and one. Using the approach of Day and
Bradley (2001) to specify the weights satisfies this stability condition for @ values of about 3
and larger. However, using unconstrained optimization techniques will produce weights that
violate this condition at much higher Q values. We also derive a modification of the original
coarse-grain methodology called the element specific modulus (ESM) formulation, in which
each element of the coarse-grain cell has a different unrelaxed modulus. We demonstrate
that the accuracy of the coarse-grain system for ¢ values lower than about 20 is significantly
improved by using the ESM formulation. The cost of implementing the ESM formulation is
virtually identical to the original Day and Bradley (2001) formulation. Finally, we present
technique for optimizing the accuracy of the coarse-grain system for very low @ models,
based on matchihg the effective quality factor (Qg). In addition, we demonstrate that using
optimization techniques that do not employ the effective parameter Qg will actually degrade

(rather than improve)} the accuracy of the resulting coarse-grain system.
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Appendix; Complete Expressions for Mg and Qr

From equations ( 7) and (9) we can write

Mp(w) =V, % Vi 1 Ty g Trwry -1y 1 N
B =Vr iz My, wirf +1 W +1 ’ (A1)
where the element specific unrelaxed modulus A « 18 given by equations (16} and (17).
Letting
T TpwTy
=1 _ d = 2
%=1 wirl 41 an B wig 41 (A42)

equation (A1) can be written as

N -1
Vi [ Qp . B J
- Mp{w) = V; EV R B e i T, 2 . A3
E() T{]ngu Cl‘,r%'f”)@]? a}2c+/6]§ ( )
Now setting
Ve [ o J =~ Vi [ B ]
A= ———s and B=) 2 _Fk , (A4)
;f:‘: My, [of + B k=1 Mi, Lo} + 52
we obtain the expression
A . B
Mg(w) = VT[Az 5 +ZA2+32J (A5)
Finally, from equations (8), (A4) and (A5), we have for the effective quality factor
> Y% [__‘?‘ﬁ__
o1 M, [of + 57
Qpw) = B T T (A6)
LV [ B J
k=1 Mku an% +ﬁ]§
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TABLE 1: Attenuation parameters for plane wave tests.

Qo Ta TN So (HZ) Cnm:n(km/s)
20 0.00159 15.9 1.0 6.97
5 0.00159 15.9 1.0 11.87

TaBLE 2: Coefficients for optimized low Qp models.

Qo =5 Qo = 2

k T Tk Ty Tk

1 0.700552  5.03655 x 1073 0.863550  4.48560 x 103
2 0.666418  6.52579 x 103 0.863550  4.48560 x 103
3 0.609150  1.54751 x 102 0.863550  4.48560 x 10™3
4 0.602998  4.36147 x 102 0.863550  1.78575 x 102
5 0.567881  0.48709 x 1072 0.863550  1.78575 x 102
6 0.609272 0.267383 0.863550  7.10919 x 10~2
7 0.666418 0.753587 0.863550 0.224812

8 0.659820 1.94820 0.863550 0.252244

TABLE 3: Layered velocity structure.

Vp(km/s)  Vs(km/s) density(g/cm®) @, Q. thickness(km)

1.7 0.5 2.1 10 3 0.55
3.0 1.2 2.3 20 10 1.00
6.0 3.464 2.7 100 50 -
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Figure 3: Plots of Q(w) [thin line, from equation (2)] and Qg (w) {thick line, from equation
(A8)] determined using the formulation of Day and Bradley (2001) to specify the 7, coeffi-
cients for various target values of ®o. The maximum Z for each (o is shown at the upper

right of each panel.
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Figure 4: Plots of Q(w) [thin line, from equation (2)] and @g(w) [thick line, from equation
(A6)] determined using the least-squares formulation of Emmerich and Korn (1987) to specify
the Zj coefficients for various target values of Q. The maximum Zj for each Qg is shown
at the upper right of each panel. '

Graves and Day: Coarse-Grain Analysis 26



P wave Q,=20r =10 km S wave Qy =20 =10 km

0.8 0.8 T
0.7 Analytic N 0.7 k ~— Anaiytic i
4 =~ = Element Specific M, =~ ~ Element Specific M,
S 06 | E b e Constant M, 1 oe6¢ Constant M, ]
& :
9
)
>
yo]
@
N
©
£
S
=
i 1 '0.1"4 | )

-0.1

1 2 3 4 2 3 4 5
Time (s) Time (s)
Pwave Q,=5r=10 km , Swave Q;=5r =10 km
0.4 T T 0.4 T T
Analytic Analytic
~ =~ Element Specific M ~ =~ Element Specific My
U Y U, R Constant M, 17 %37 Constant M, ]
:‘(.':_; .. .
Lo
[
- N
- 0.2
@
NN
o
E o -
=
0.0 . .
1 2 3 4 2 3 4 5
Time (s) ' Time (s)

Figure 5: Waveform comparison for plane P wave (left panels) and S wave (right panels)
calculations with target Qg values of 20 (upper panels) and 5 (lower panels). Propagation
distance is 10 km. The analytic solution (solid line) is from Kjartansson (1979). For the
coarse-grain calculations, the element specific My, solution (dashed line} uses equation (16)
to specify the unrelaxed modul; and the constant M, solution (dotted line) uses the method
of Day and Bradley (2001) to specify the unrelaxed modulus. Both coarse-grain solutions
use the method of Day and Bradley (2001) to specify the #, and 7 coefficients.
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P wave Q, =20 Ax =2 km

S wave Q; =20 Ax =2 km
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Figure 6: Apparent attenuation (¢)4) for the plane P wave (left panels) and S wave (right
panels) calculations with target Qo values of 20 (upper panels) and 5 (lower panels). Sep-
aration distance is 2 km. The vellow shaded region represents +25% variation around the
target QJo value. For the coarse-grain calculations, the element specific My, solution (red
symbols) uses equation (16) to specify the unrelaxed moduli and the constant M, solution
(green symbols) uses the method of Day and Bradley (2001) to specify the unrelaxed mod-
ulus. Both coarse-grain solutions use the method of Day and Bradley (2001) to specify the
Iy, and 7y coefficients. Also shown are theoretical @g{w) curves determined from equation

(AB).
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Figure 7: Normalized phase velocity measured from the plane P wave (left panels) and .
S wave (right Panels) calculations with target Qg values of 20 (upper panels) and 5 (lower
panels). For the coarse-grain calculations, the element specific My, solution (red symbols)
uses equation (16) to specify the unrelaxed moduli and the constant M, solution (green
symbols) uses the method of Day and Bradley (2001) to specify the unrelaxed modulys,
Both coarse-grain solutions use the method of Day and Bradley (2001) to specify the % and
Tk coefficients. Also shown are theoretical cp(w) curves determined from equations (15) and
(A5).

Graves and Day: Coarse-Grair Analysis 29
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Figure 8: Theoretical and calculated waveform (upper left), @ 4 (upper right) and phase
velocity (lower right) comparisons for the plane P wave model with Q) = 12, and using the
least-squares approach of Emmerich and Korn (1987) to determine the Zj coefficients. The-
oretical curves for the general [Q(w) and c(w)] and effective [Qp{w) and cg(w)] parameters
are also shown in the right panels.
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Figure 9: Waveform comparison for plane P wave (left panels) and S wave (right panels)
calculations with target Qo values of 5 (upper panels) and 2 (lower panels). Propagation
distance is 10 km. The analytic solution (solid line) is from Kjartansson (1979). For the
coarse-grain calculation, the element specific M, solution (dashed line) uses equation (16)
to specify the unrelaxed moduli, and the z; and 7y, coefficients are determined using a grid
search algorithm to optimize the fit of Qg (w) to the target Qg value. :
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P wave Q;=5Ax=2km
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Figure 10: Apparent attenuation (Q4) for the plane P wave (left panels) and S wave
(right panels) calculations with target Qo values of 5 (upper panels) and 2 (lower panels).
Separation distance is 2 km. The yellow shaded region represents +25% variation around
the target (Jo value. For the coarse-grain calculation, the element specific My, solution (red
symbols) uses equation (16) to specify the unrelaxed moduli, and the Z; and 7, coefficients
are determined using a grid search algorithm to optimize the fit of Qg(w) to the target Qo
value. Also shown are theoretical @g(w) curves determined from equation (A6).
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Also shown are theoretica] ce(w) curves determined from equationg (15) and (A5).
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Elastic: R=5 km

Radial Tangential Vertical

: : : T 17T [ T T T T 1T | : L1 T (] T T T T T 1T 77 I :
€ X 1[ ] ]
i
a T £l E E
E L 1F 3 ]
< C C ] ]
5} o q ‘
gotg R

C Lo L I 1 1 1 L1114 I N C L1 I"' i 1. A | T S I 3 ]

0.1 1 0.1 1 0.1 1
Frequency {(Hz) Frequency (Hz) Frequency (Hz)

Figure 12: Comparison of FD and FK simulations for the purely elastic layered model test.
Top panels show three component velocity waveforms at a range of 5 km from the source.
Peak velocity for each component is indicated at upper right of each set of traces. Lower
panels compare the Fourier amplitude spectra (unsmoothed) for the simulations. All results
have been lowpass filtered at 1 Hz.
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Anelastic: R=5 km
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Figure 13: Comparisdn of FD and FK simulations for the anelastic layered model test.
Three different FD simulations were performed, using respectively, the CM, ESM and Opti-
mized ESM formulations. Top panels show three component velocity waveforms at a range
of 5 km from the source. Peak velocity for each component is indicated at upper right of
each set of traces. Lower panels compare the Fourier amplitude spectra (unsmoothed) for
the simulations. All results have been lowpass filtered at 1 Hz.
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